推 iamseed:謝摟~~~ 61.216.128.167 07/08
※ 引述《iamseed (轉學考 必勝~~~)》之銘言:
: x^2+y^2+z^2<等於4
: ∫∫∫ 1/(9-x^2-y^2-z^2) dxdydz =?
: 球面座標變換的題目
: 算2次都跟解答不一樣
: 哪位大大幫忙算一下 3Q
令V表球體 x^2 + y^2 + z^2 ≦ 4 , x = rcosΘsinψ, y = rsinΘsinψ , z =rcosψ
則 |J| = (r^2)*sinψ , 0≦r≦2 , 0≦ψ≦π , 0≦Θ≦2π
1
所以 ∫∫∫ --------------------- dxdydz V 9 - x^2 - y^2 - z^2
2π π 2 (r^2)*sinψ
= ∫ ∫ ∫ ------------- drdψdΘ
0 0 0 9 - r^2
2π π 2 r^2
= [∫ 1dΘ]*[∫ sinψdψ]*[∫ -------- dr]
0 0 0 9 - r^2
|π 2 9
= (2π)*(-cosψ| )*[∫ -1 + --------- dr]
|0 0 9 - r^2
2 9 1 1
= (2π)*(2)*[∫ -1 - ---(------- - -------) dr]
0 6 r - 3 r + 3
2 3 1 1
= (4π)*[∫ -1 - ---(------- - -------)dr]
0 2 r - 3 r + 3
3 |r - 3| |2
= (4π)*[(-r) - ---ln|-----| | ]
2 |r + 3| |0
3 1
= (4π)*[(-2) - ---ln---]
2 5
3
= (4π)*[(-2) + ---ln5] = -8π + 6πln5
2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.66.173.21