看板 trans_math 關於我們 聯絡資訊
※ x^4 + 1 : ∫------------dx : x^6 + 1 : 引述《Karter (偽Carter)》之銘言: : 先謝謝了 <(_ _)> x^4 + 1 I= ∫------------dx x^6 + 1 let x=tanA do the integration, you may obtain (tanA^2 + 1)tanA^2 I=A+∫-------------------dA where tanA^2 means (tanA)^2 tanA^6 + 1 Then let tanA^2=u, du du dA=---------------=-------------- 2tanA secA^2 2u^1/2 (u+1) (tanA^2 + 1)tanA^2 u^1/2 du du^2/3 Thus,∫-------------------dA=∫-------------------=1/3∫------------- tanA^6 + 1 2(u^3+1) u^3+1 =1/3arctan(u^2/3) =1/3arctan(tanA^3) Now, I=arctan(x)+arctan(x^3) or we may write it as I=2/3arctan(x)-1/3arctan[x/(x^2-1)] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.251.241
amymayyam:高手.....140.127.179.227 07/09
ek0519: 高手..... 61.228.25.202 07/09
Karter: 高手中的高手 感恩 <(_ _)> 218.168.194.15 07/10