看板 trans_math 關於我們 聯絡資訊
※ 引述《afulet (阿弗雷特)》之銘言: : Find : 1/100 : ╭ 100 99 ╮ : lim │ (n + n ) │ - n = ? : n→∞ ╰ ╯ : 求解法  (答案為1/100) (1 + 1/n)^(1/100) - 1 (n^100 + n^99)^(1/100) - n = ----------------------- 1/n 因此 lim { (n^100 + n^99)^(1/100) - n } n→∞ (1 + 1/n)^(1/100) - 1 = lim ----------------------- n→∞ 1/n (1+h)^(1/100) - 1^(1/100) = lim --------------------------- = f'(1) = 1/100, h→0 h 其中 f(x) = x^(1/100). (f'(x) = 1/100 * x^(-99/100) f'(1) = 1/100) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.68.227.219
ying1019:這題目還真妙 210.58.172.85 07/12
dart:這也可以用羅比達唷.. 61.222.88.67 07/13