推 feathersss:了解 謝謝 203.70.92.25 07/16
※ 引述《feathersss (不定)》之銘言:
: 請問幾題:
: 1.Find the surface area of the surface of revolution generated by revolving
: the arc of unit circle x^2+y^2=1 in the first quadrant about the ling x+y=1.
: 只會做繞x軸或y軸的~這種繞直線的要怎麼做呢?
: 2.Show that:if f'(c)<0, then f has no extreme value at c.
: 3.Show that the improper integral 1/√2π∫e^(-t^2/2) dt 從-∞積到x
: converges for all real number x.
1. |x+y-1|
點 (x,y) 到 直線 x+y=1 的距離 d(x,y) = ---------
2^1/2
所求為 2πd(x,y) 在 C: x^2+y^2=1 in the first quadrant 上的線積分
即 ∫ 2πd(x,y) ds
C
C: x=cosθ , y=sinθ , 0≦θ≦π/2
ds = (x'(θ)^2 + y'(θ)^2) dθ = dθ
π/2 |cosθ+sinθ-1|
所求 = ∫ 2π ---------------- dθ = .......
0 √2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.250.72