看板 trans_math 關於我們 聯絡資訊
※ 引述《nomindman ()》之銘言: : Let g(x) = f(x*2) , where f is twice differentiable for all x , : f'(x) > 0 for all x ≠ 0 , and f is concave downward on : (-∞ , 0 ) and concave upward on ( 0 , ∞ ) . : (1) At what numbers does g have an extreme value ? : (2) Discuss the concavity of g . : 因為沒有解答...請高手們幫我看看thx f is concave downward on (-∞ , 0 ) and concave upward on ( 0 , ∞ ) -> f'' < 0 on (-∞ , 0 ) and f'' > 0 on ( 0 , ∞ ) g'(x) = 2xf'(x^2) 只有x=0 才有極值 g''(x) = (4x^2)f''(x^2) + 2f'(x^2) ﹏﹏﹏﹏﹏﹏﹏ ﹏﹏﹏﹏ >0 >0 so g is concave upward on R -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.168.242.213
hotdave:我想問"只有X=0才有極值這"個理論是從哪來的 61.64.109.220 07/17
beatitude:g'(x)=0 只有一解 x=0218.168.242.213 07/17
hotdave:嗯,多謝!!! 61.64.109.220 07/17