看板 trans_math 關於我們 聯絡資訊
※ 引述《diedheart (die)》之銘言: : find extreme value of : f(x)=e -xy (-xy是在次方...即右上角) : x^2+4y^2<=1 : 謝謝 f(x,y)=e^(-xy) g(x,y)=x^2+4y^2 fx=-ye^(-xy) fy=-xe^(-xy) gx=2x gy=8y By Lagrange Multiplier Thm fx=a gx => -ye^(-xy)=2ax fy=a gy => -xe^(-xy)=8ay (1)x^2+4y^2=1 y x x= 2^(-1/2),-2^(-1/2) a= - ----e^(-xy) = - ----e^(-xy) => x^2=4y^2 => y= 2^(-1/2),-2^(-1/2) 2x 8y fmax=e^(1/2) fmin=e^(-1/2) (2)x^2+4y^2<1 solve critical points fx=0 and fy=0 fx=-ye^(-xy)=0 => y=0 => fxx=y^2e^(-xy)=0 and fxy=fyx=(xy-1)e^(-xy)=-1 fy=-xe^(-xy)=0 => x=0 => fyy=x^2e^(-xy)=0 / fxx fxy / d= / / = -1 < 0 => saddle point / fyx fyy / (行列式) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.217.21
diedheart:謝謝你 06/03 21:42