作者ek0519 (另一個天堂)
看板trans_math
標題Re: [考古] 今年的成大考題 @@
時間Tue Jul 11 07:44:23 2006
※ 引述《venwhah (昆)》之銘言:
: 以下是今年的成大微積分部分考題
: 只有抄這幾提出來 (唉 變炮灰 囧 )
: 大概是看中文的題目慣了 有些都不會算
: 一整個不知道該說什麼
: 有會的人就幫忙解一下吧
: 非常感謝
: 1.Use the method of Lagrange Multiplier to find the max value of the fuction
: 3 2 2 2
: f(x,y,z)=x+3y-2z define on R subject to the constrain x + y +z =14
: 2.Let f be a real valued fuction defined on R with f"(x)>0
: for all x ,show that f(x)≧f'(0)+f(0) for all x
: 3. x
: e ㏑(x+e) 1
: Let f(x)=∫ ---------------- dx defined on (-1,∞)
: 1 4 2
: √(x + x +5)
: (a)show that f is a strictly increasing fuction
: -1
: (b)find (f )'(0)
抱歉 是我說錯 還是要用微分來證
a. 1
f'(x) = 1/(√(e^x *ln(x+e))^4+(e^x *ln(x+e))^2+5 ) * [e^x*ln(x+e) +e^x*----
x+e
f'(0) = 1/(√1+1+5) *(1+1/e) >0
f is a strictly increasing fuction
-1
b. f(f ) =x
-1 -1
f'(f ) * (f )'(x) = 1
-1 -1
( f )'(0) = 1/ f'(f (0))
f (0) = 0 因為積分上限等於下限
-1
so f (0)=0
-1
( f )'(0) = 1/ f'(0)
從a.可知
-1
(f )'(0) = √7) /(1+1/e)
抱歉用剪貼貼得太快了....忘記看答案有沒有錯
--
用我看得見的指尖
將你一身的華麗褪去
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.135.70.14
→ ppviena:f'(0)>0 不代表他嚴格遞增140.119.129.146 07/11 09:04
推 guestoo:f'(x)會>0 因為根號和後面那堆都是正的 218.164.227.91 07/11 09:08
→ guestoo:大概是打太快了 218.164.227.91 07/11 09:11
推 bearboy:最後答案錯了...是e*√7除以e+1吧 ? 61.31.162.139 07/11 09:20
推 topractise:請問一下這個是用微積分第一定理嗎 59.112.16.229 07/11 09:39
→ topractise:微積第一定理不是要"對x微分,對t積分" 59.112.16.229 07/11 09:40
→ topractise:才可以用嗎?_?.... 59.112.16.229 07/11 09:41
推 ek0519:喔喔喔 打太快... 220.135.70.14 07/11 16:11
※ 編輯: ek0519 來自: 220.135.70.14 (07/11 16:16)
推 ek0519:a.是用第一定理 你的問題我不不太懂? 220.135.70.14 07/11 16:19
→ bearboy:嗯^^ 61.31.162.139 07/11 17:33
推 kcuricky:這用FTC1似乎也怪怪的,很沒把握 210.58.49.232 07/13 21:26