作者ilovecurl (ilovecurl)
看板trans_math
標題[考古] 政大應數95年微積分(一)
時間Thu Jul 20 23:01:17 2006
這是今年我有疑問的幾題,請高手指教
3.if f(x) is continuous on [0,1], show that there exists c in [0,1],
such that f(c) = c.
此題我覺得題目怪怪的,因為我只要f(x)在[0,1]間連續,有最小值大於1,那不就永遠
找不到一個c使得f(c) = c 了?
7.In the method of Lagrange multipliers, f(x,y) is objective function.
g(x,y) = 0 is the constraint, and (x0,y0) is the only solution.
Δf |
Evaluate lim -----|
Δx->0 Δg |(x0,y0)
Δy->0
9.when is f(x,y) differentiable at (a,b)?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.113.187.109
推 GayerDior:3. Bolzano定理 61.229.162.226 07/21 00:03
→ SMer:3.顯然是錯的, f(x)=2 203.74.43.149 07/21 01:19
→ SMer:7.想想使用乘數法則的先決條件 203.74.43.149 07/21 01:20
→ SMer:9.只是叫你把多變數函數可微的定義寫一次 203.74.43.149 07/21 01:21
推 ilovecurl:3.是題目錯的意思嗎? 59.113.180.147 07/21 19:15
→ SMer:Yes 203.74.43.158 07/21 19:37
→ binbinthink:9 就是多變元的可微的定義寫一下 61.224.68.185 12/31 11:24