看板 trans_math 關於我們 聯絡資訊
: ※ 引述《pobm (待從頭收拾舊河山)》之銘言: : : If f(x) is continuous on [0,1] and satisfies 0≦f(x)≦1, then f has a fixed point ^^^^^^^^^^^^^^^^^^^^^^^^ 題目有瑕疵..必須加上這個條件! : : show that there exists c in [0,1], such that f(c)=c 既然題目要求滿足f(c)=c, 已知 Df on [0,1], 則勢必 0≦ Rf ≦1 <pf>:   let g(x)=f(x)-x is continuous on [0,1] so we have g(0)=f(0)-0≧0, g(1)=f(1)-1≦0 for 0≦f(x)≦1  ∴ g(0)g(1)≦0   By I.V.T Then there is c in [0,1] s.t g(c)=0  => f(c)-c=0  ∴ f(c)=c    Q.E.D -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.62.121.187
GayerDior:還有兩個case (0,0)點和(1,1)點 61.229.153.246 11/19 08:25
GayerDior:3個case綜合才滿足c in [0,1] 61.229.153.246 11/19 08:26
GayerDior:不然你醬算只滿足c in (0,1) 61.229.153.246 11/19 08:26
axis0801:注意g(0)g(1)≦0 就已包含(0,0)和(1,1) 61.62.121.187 11/19 08:49
axis0801:因此c=0滿足g(0)=0, 或c=1滿足g(1)=0 61.62.121.187 11/19 08:53
axis0801:既然有g(0)≧0, g(1)≦0的條件了,當然也 61.62.121.187 11/19 08:57
axis0801:就暗示了f(0)=0 和 f(1)=1, 所以我才能有 61.62.121.187 11/19 09:05
axis0801:足夠條件說必存在 c in [0,1] s.t g(c)=0 61.62.121.187 11/19 09:07
GayerDior:嗯嗯 沒注意看 ;p 61.229.159.204 11/19 11:09