看板 trans_math 關於我們 聯絡資訊
※ 引述《tiyico (宏)》之銘言: : xy(x^2-y^2) : { ------------- (x,y) =/= (0,0) : 01. f(x,y) ={ x^2+y^2 : { : 0 (x,y) = (0,0) : then f (0,0) = ? f (0,0) = ? : xy yx : x^2 y^2 z^2 : 02. Let R be the region inside the ellipsiod ----- + ----- + ----- = 1 : a^2 b^2 c^2 : (a,b,c >0) : and above the plane z = b-y, then the volumn of the region R is ?? : x^2˙sin(1/x) : 03. lim ------------- (我算0但是不確定耶..) : x->0 tanx (x^2)(sin(1/x)) lim ----------------- x->0 tanx x 1 = lim (------)((x)(sin(---)) x->0 tanx x x 1 = (lim ------)(lim (x)(sin(---))) x->0 tanx x->0 x 1 1 = (lim ----------)(lim (x)(sin(---))) x->0 (secx)^2 x->0 x = 1*0 = 0 P.S. 0 ≦ |sin(1/x)| ≦ 1 0 ≦ |(x)(sin(1/x))| ≦ |x| lim 0 ≦ lim |(x)(sin(1/x))| ≦ lim |x| x->0 x->0 x->0 因為 lim 0 = 0 = lim |x| x->0 x->0 所以由夾擠定理得知 lim |(x)(sin(1/x))| = 0 => lim (x)(sin(1/x)) = 0 x->0 x->0 : 1 sin(πx^2) 1 : 04. prove 0 < ∫ ---------- dx < ---ln2 : -1/√2 x 2 : 沒頭緒 : 感激賜教了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21