看板 trans_math 關於我們 聯絡資訊
※ 引述《tiyico (宏)》之銘言: : xy(x^2-y^2) : { ------------- (x,y) =/= (0,0) : 01. f(x,y) ={ x^2+y^2 : { : 0 (x,y) = (0,0) : then f (0,0) = ? f (0,0) = ? : xy yx δ(fy) f (0,0) = --------(0,0) yx δx fy(Δx , 0) - fy(0,0) = lim ---------------------- Δx->0 Δx 其中 fy(Δx,0) f(Δx,Δy) - f(Δx,0) = lim ---------------------- Δy->0 Δy ((Δx)(Δy)((Δx)^2 - (Δy)^2))/((Δx)^2 + (Δy)^2) - 0 = lim -------------------------------------------------------- = Δx Δy->0 Δy f(0,Δy) - f(0,0) 0 而 fy(0,0) = lim ----------------- = lim ----- = 0 Δy->0 Δy Δy->0 Δy Δx - 0 則 fyx(0,0) = lim --------- = 1 Δx->0 Δx δ(fx) fx(0,Δy) - fx(0,0) fxy(0,0) = ------(0,0) = lim ------------------- δy Δy->0 Δy 其中 fx(0,Δy) f(Δx,Δy) - f(0,Δy) = lim --------------------- Δx->0 Δx ((Δx)(Δy)((Δx)^2 - (Δy)^2))/((Δx)^2 + (Δy)^2) - 0 = lim -------------------------------------------------------- = -Δy Δx->0 Δx f(Δx,0) - f(0,0) 0 而fx(0,0) = lim ------------------ = lim ----- = 0 Δx->0 Δx Δx->0 Δx -Δy - 0 則fxy(0,0) = lim ---------- = -1 Δy->0 Δy : x^2 y^2 z^2 : 02. Let R be the region inside the ellipsiod ----- + ----- + ----- = 1 : a^2 b^2 c^2 : (a,b,c >0) : and above the plane z = b-y, then the volumn of the region R is ?? : x^2˙sin(1/x) : 03. lim ------------- (我算0但是不確定耶..) : x->0 tanx : 1 sin(πx^2) 1 : 04. prove 0 < ∫ ---------- dx < ---ln2 : -1/√2 x 2 : 沒頭緒 : 感激賜教了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21
sioumi:第一行的fxy...應該是fyx 59.113.114.76 01/31 13:29
※ 編輯: LuisSantos 來自: 61.66.173.21 (02/01 00:47)