看板 trans_math 關於我們 聯絡資訊
1 ∫---------- dx 1 + cosx (1 - cosx) (1 - cosx) = ∫-------------------- dx = ∫----------- dx (1 + cosx)(1 - cosx) (sinx)^2 = ∫(cscx)^2 - (cscx)(cotx) dx = - cotx + cscx + C cosx 1 1 - cosx 1 - cosx = - ---- + ---- + C = ---------- = ------------------- + C sinx sinx sinx 2sin(x/2)cos(x/2) sin(x/2)sin(x/2) = ------------------ + C = tan(x/2) + C sin(x/2)cos(x/2) 1 2du 1-u^2 ∫---------- dx ( u = tan(x/2),dx = -------,cosx = ------- ) 1 + cosx 1+u^2 1+u^2 1 2du 2du 2 = ∫----------- ------- = ∫------------------ = ∫--- du = ∫du 1-u^2 (1+u^2) + (1-u^2) 2 (1 + -----) (1+u^2) 1+u^2 = tan(x/2) + C ∫ 〔(√3 ) sinx + cosx 〕^2 dx = ∫ 4〔sinx (√3/2 ) + cosx (1/2) 〕^2 dx = ∫ 4〔sin(x + π/6)〕^2 dx = ∫ 2 2〔sin(x + π/6)〕^2 dx = 2∫ 2〔sin(x + π/6)〕^2 dx = 2 ∫〔1 - cos(2x + π/3)〕dx = ∫ 2 dx - ∫ cos(2x + π/3) d(2x + π/3) = 2x - sin(2x + π/3) + C = 2x - sin(2x) (1/2) - cos(2x) (√3/2 ) + C = 2x - (√3/2) cos(2x) - (1/2) sin(2x) + C -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.122.225.109
GayerDior:如此高度智慧的文章 應該讓所有人都讀到 61.229.147.158 02/07 01:01
GayerDior:這種題常常有人問 ψ(._______. )> 61.229.147.158 02/07 01:10
topractise:蠻熱心的 推一下! 59.112.3.95 02/07 01:11
Frobenius:謝謝<_ _>140.122.225.109 02/07 01:50