看板 trans_math 關於我們 聯絡資訊
※ 引述《Frobenius (i^(-i)= e^(π/2))》之銘言: : ※ 引述《Jasy (Transferers)》之銘言: : -1 ( s + 1 ) : L { ─────────────── } : ( s^2 + 1 )( s^2 + 4s + 13 ) : -1 1 1 1 s -1 3 : = L { ─ ──── + ─ ──── + ─ ───────── : 10 s^2 + 1 20 s^2 + 1 15 [ (s+2)^2 + 3^2 ] : -1 (s+2) : + ─ ───────── } : 20 [ (s+2)^2 + 3^2 ] : = (1/10)sin(t) + (1/20)cos(t) - (1/15)e^(-2t)sin(3t) - (1/20)e^(-2t)cos(3t) 1 s 3 (s+2) 設 A ──── + B ──── + C ───────── + D ───────── s^2 + 1 s^2 + 1 [ (s+2)^2 + 3^2 ] [ (s+2)^2 + 3^2 ] (至於為什麼要這樣設,因為這樣比較好看出反轉換) ( A + B s ) ( s^2 + 4s + 13 ) + ( 3 C + D(s+2) ) ( s^2 + 1 ) = s + 1 = 1 + s 令 s = i,(A + B i) ( -1 + 4i + 13 ) = (12A - 4B) + i(4A + 12B) = 1 + i 12A - 4B = 1 36A - 12B = 3 => 4A + 12B = 1 +) 4A + 12B = 1 ──────── 40A = 4 => A = (1/10) => 12B = (6/10) => B = (1/20) s^2 + 4s + 13 = 0 => s = -2 ± 3i 令 s = -2 + 3i,1 + s = 1 - 2 + 3i = -1 + 3i,s + 2 = 3i s^2 = -5 - 12i,s^2 + 1 = -4 -12i, ( 3 C + 3 D i ) ( -4 -12i ) = (-12 C + 36 D) + i(-36 C - 12 D) = -1 + 3i -12C + 36D = -1 -12C + 36D = -1 => -36C - 12D = 3 -) -12C - 4D = 1 ───────── 40D = -2 => D = (-1/20) => -12C = (6/5) => C = (-1/10) A = (1/10),B = (1/20),C = (-1/10),D = (-1/20) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.122.225.109
Frobenius:這題說不定用留數更快解決140.122.225.109 02/07 04:06
Frobenius:用留數反而慢140.122.225.109 12/27 19:21