看板 trans_math 關於我們 聯絡資訊
※ 引述《kusorz (^~^)》之銘言: : suppose the f is one to one and f(1)=2,f(2)=3,f'(1)=1,f'(2)=3,f'(3)=5 : find (f^-1)'(2)=? -1 f(1)=2 , f (2)=1 -1 -1 (f )'(2) = 1/f'(f (2)) = 1/f'(1) = 1/1 = 1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.112.84.195
MrTang:我算1/2...真糗~~~ 61.228.163.30 05/21 01:08
MrTang:能問一下f'(2)的反函數~下一步是怎麼來的. 61.228.163.30 05/21 01:09
MrTang:想不太出來 61.228.163.30 05/21 01:15
goshfju:你是指反函數微分的公式嗎? 59.112.84.195 05/21 01:26
goshfju:其實上面3261篇就有板友貼了 你可以去參考 59.112.84.195 05/21 01:27
goshfju: y=f^-1 => f(y)=x => f(f^-1(x))=x 59.112.84.195 05/21 01:29
goshfju:上式對x微分 f'(f^-1(x))*(f^-1)'(x)=1 59.112.84.195 05/21 01:30
goshfju:(f^-1)'(x) = 1 / f'(f^-1(x)) 59.112.84.195 05/21 01:30
MrTang:謝謝~ 61.228.155.248 05/21 23:53