看板 trans_math 關於我們 聯絡資訊
※ 引述《kusorz (^~^)》之銘言: : 1-cosx + tanx-sinx : lim (______ _______ ) : x→0 x^2 x^3 1 - cosx tanx - sinx lim (---------- + -------------) x→0 x^2 x^3 (x)(1 - cosx) + (tanx - sinx) = lim ------------------------------- x→0 x^3 x - (x)(cosx) + tanx - sinx = lim ----------------------------- x→0 x^3 1 - cosx + (x)(sinx) + (secx)^2 - cosx = lim ---------------------------------------- x→0 (3)(x^2) 1 - 2cosx + (x)(sinx) + (secx)^2 = lim ---------------------------------- x→0 (3)(x^2) 2sinx + sinx + (x)(cosx) + (2)(secx)(secx)(tanx) = lim -------------------------------------------------- x→0 6x 3sinx + (x)(cosx) + (2)((secx)^2)(tanx) = lim ----------------------------------------- x→0 6x 3sinx (x)(cosx) (2)((secx)^2)(tanx) = lim ----- + lim --------- + lim --------------------- x→0 6x x→0 6x x→0 6x sinx cosx 1 tanx = lim ------ + lim ------ + lim ((secx)^2)(---)(----) x→0 2x x→0 6 x→0 3 x 1 sinx 1 1 tanx = (---)(lim ----) + --- + (---)(lim ((secx)^2))(lim ----) 2 x→0 x 6 3 x→0 x→0 x 1 1 1 = (---)(1) + --- + (---)(1)(1) 2 6 3 1 1 1 = --- + --- + --- 2 6 3 3 + 1 + 2 6 = ----------- = --- = 1 6 6 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.66.22
kanx:L兄 這一題考不考慮用級數解來作? 220.133.130.61 05/23 17:24
lukechen90:還是算的出來阿= =,只是慢了點XD 219.68.232.104 05/23 22:42
lukechen90:不過我佩服此PO的勇氣,做好久= = 219.68.232.104 05/23 22:53