看板 trans_math 關於我們 聯絡資訊
(1) f(x),f'(x) and f''(x) are all continous on I Suppose x=a is a critical point of f(x) show that (i)If f''(x)≧0 for all x屬於I then x=a is a global minimizer of f(x) (ii) If f''(x)>0 then x=a is a strict local minimizer of f(x) (提示 用泰勒展開證明之) (2) Show that any continous function f:[0,1]->[0,1] has at least one fixed point (i.e. 存在c屬於(0,1)-> f(c)=c ) (3) { 1 , x>0 y>0 f(x,y) = { 0 , o.w. show that f_x and f_y both existat(0,0) but it is not differentiable at (0,0) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.71.59.88
siriusinlove:第1題應該不用到泰勒吧第2用I.v.t 61.228.181.195 06/21 02:00
siriusinlove:第3用偏微跟可微的極限的定義 61.228.181.195 06/21 02:01