作者LuisSantos (^______^)
看板trans_math
標題Re: [考古] 成大82
時間Mon Jul 2 10:15:12 2007
※ 引述《johnnyzsefb (AJ)》之銘言:
: x
: 1.suppose f:R→R:f(x)=∫(t^2)(3+t^4)^0.5 dt +2
: 1
: (iii)determine the range of f.
: (v) show that 4/3 < f(0) < 2
: 以上我不知如何下手
(iii) The range of f is R .
(v)
因為當 0 < t < 1 時 ,
0 < (t^2)(√(3 + t^4)) < (t^2)(√(3+1)) = (2)(t^2)
1 1 1
所以 ∫ 0 dt < ∫ (t^2)(√(3 + t^4)) dt < ∫ (2)(t^2) dt
0 0 0
1 2
=> 0 < ∫ (t^2)(√(3 + t^4)) dt < ---
0 3
1 -2
=> 0 > -∫ (t^2)(√(3 + t^4)) dt > ---
0 3
0 -2
=> 0 > ∫ (t^2)(√(3 + t^4)) dt > ---
1 3
0 2 4
=> 2 > ∫ (t^2)(√(3 + t^4)) dt + 2 > 2 - --- = ---
1 3 3
4 0
=> --- < ∫ (t^2)(√(3 + t^4)) dt + 2 < 2
3 1
4
=> --- < f(0) < 2
3
: 3.(ii) 1
: is the improper integral ∫ln(x)/(1-x^2) dx convergent?
: 0
: 這題原想說用比較測試法但是找不到合適的~
: 先說謝謝啦~
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.119.41.162
→ yhliu:要你求 range, 並不是寫出答案就好. 163.15.188.87 07/02 10:30
推 acecaz:寫R不行嗎~還是要寫(∞,∞)? 219.71.216.65 07/02 12:01
→ yhliu:"不是寫出答案就好", 意思是要有 "理由". 163.15.188.87 07/02 12:06