看板 trans_math 關於我們 聯絡資訊
※ 引述《johnnyzsefb (AJ)》之銘言: : II. :    :  2.(14%) If f:R→R satisfies f(x+y)=f(x)f(y) for all x,y belong to R and : f(x)=1+xg(x) where lim g(x)=1. : x→0 : Show that f is differentiable,and find f(x). : 以上 : 感謝~XD f(0)=f(0+0)=f(0)f(0) ==> f(0)=0 or 1. If f(0)=0, then f(x)=0 for all x. f(x) = 1+xg(x) with g(x)→1 when x→0. 故 f(x)≠0, at least when x mear but not equal to 0. 故 f(0)≠0, 即 f(0)=1. 故 f(x)-f(0) ----------- = g(x)→1 when x→0 x 這證明了 f'(0) 存在, 且為 1. 由 f'(0) 存在及函數方程式 f(x+y)=f(x)f(y) 易證 f 處處可微, 且因此可得 f(x)=e^x. -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.15.188.87