看板 trans_math 關於我們 聯絡資訊
※ 引述《LuisSantos (^______^)》之銘言: : ※ 引述《klsh520 (快大二還沒車...)》之銘言: : : -Cos2x+aSinx+b : : l i m ----------------- 之極限存在,求a和b? : : x→π/2 (x-π/2)^4 : 因為極限存在 : π π : 所以 -cos((2)(---)) + a(sin(---)) + b = 0 : 2 2 : -cos(π) + (a)(1) + b = 0 : -(-1) + a + b = 0 => a + b + 1 = 0 => a + b = -1 ------(1) : -cos2x + (a)(sinx) + b : lim ------------------------ : x→π/2 (x - π/2)^4 : (2)(sin2x) + (a)(cosx) : = lim ------------------------- : x→π/2 (4)((x - π/2)^3) : (4)(cos2x) - (a)(sinx) : = lim ------------------------ : x→π/2 (12)((x - π/2)^2) : 因為極限存在 : π π : 所以 (4)(cos((2)(---))) - (a)(sin(---)) = 0 : 2 2 : (4)(cos(π)) - a = 0 : a = (4)(cos(π)) = (4)(-1) = -4 代入(1)得 : -4 + b = -1 => b = -1 + 4 = 3 回應 klsh520:為什麼極限存在就是=0?分母部分不用管他 f(x) 若 lim ------ = L(存在) 且 lim g(x) = 0 => lim f(x) = 0 x->a g(x) x->a x->a f(x) proof: ∵ lim f(x) = lim [------ * g(x)] x->a x->a g(x) f(x) = lim ------ * lim g(x) x->a g(x) x->a = L * 0 = 0 ∴ lim f(x) = 0 x->a -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.224.91.21