看板 trans_math 關於我們 聯絡資訊
※ 引述《betray911015 (回頭太難)》之銘言: : g(x) 1 cosx : If f(x) =∫ ---------- dt , where g(x)=∫ (1+sint^2)dt : 0 √(1+t^2) 0 : find f'(π/2), ans: -1 : 完全無頭緒,請求高手 g(x) 1 f(x) = ∫ ------------- dt 0 √(1 + t^2) 1 f'(x) = (g'(x))(------------------) √(1 + (g(x))^2) π 1 f'(---) = (g'(π/2))(--------------------) 2 √(1 + (g(π/2))^2) cosx g(x) = ∫ (1 + (sin(t))^2) dt 0 g'(x) = (-sin(x))(1 + (sin(cos(x)))^2) π g'(---) = (-1)(1 + (sin(cos(π/2)))^2) 2 = (-1)(1 + (sin(0))^2) = (-1)(1 + 0^2) = (-1)(1 + 0) = -1 π cos(π/2) g(---) = ∫ (1 + (sin(t))^2) dt 2 0 0 = ∫ (1 + (sin(t))^2) dt = 0 0 π π 1 f'(---) = (g'(---))(---------------------) 2 2 √(1 + (g(π/2))^2) 1 = (-1)(--------------) √(1 + 0^2) 1 = (-1)(---) = -1 1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.27.58