看板 trans_math 關於我們 聯絡資訊
※ 引述《bitchdog (超人會隱形)》之銘言: : Use any method you like to find the local minimum and : local maximum of the following functin : : f(t)= sint : ------ , t<2π : 2+cost 用半角代換做吧! 令u=tan(t/2),t=2arctanu,-π <= t <= π 則sint=2u/(1+u^2),cost=(1-u^2)/(1+u^2) 所以f(u)=[2u/(1+u^2)]/{2+[(1-u^2)/(1+u^2)]} =2u/(3+u^2) =>f'(u)=2(3-u^2)/(3+u^2)^2=0 解得u=sqrt3 or -sqrt3 剛好可配一個local max.與另一個local min. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 211.76.57.219
david7834:這種解法也很好^^ 61.225.194.65 01/16 12:27