※ 引述《JULIKEBEN (JU)》之銘言:
: 請問
: ∞
: ln(n)
: Σ ----------------- 有收斂!
: n^(1/2)*e^(n)
: n=1
: 1
: 因為和-------- 比較
: e^n
: 想問是怎樣看的呢 怎樣計算??
: 謝謝
(1) 0 ≦ ln(n) < √n , n = 1,2,...
令 f(x) = ln(x) - √x , x 屬於 [1,∞)
1 1
=> f'(x) = --- - ------ , x > 1
x 2√x
=> f'(x) > 0 , 1 < x < 4 ; f'(x) < 0 , x > 4
=> f(x) 在 x = 4 有最大值
=> 對任意 x ≧ 1 , f(x) ≦ f(4) = 2ln(2) - 2 < 0
=> x ≧ 1 , 0 ≦ ln(x) < √x
=> 0 ≦ ln(n) < √n , n = 1,2,...
(2)
ln(n) 1
0 ≦ -------------- < 1 * e^(-n) = ( --- )^(n)
√n * e^(n) e
∞ 1
因為 |1/e| = 1/e < 1 所以 Σ ( --- )^n 收斂
n=1 e
∞ ln(n)
由 comparison test , Σ --------------- 收斂
n=1 √n * e^(n)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.127.97.237