看板 trans_math 關於我們 聯絡資訊
※ 引述《verysong (verysong)》之銘言: : f(x) = | 1-x^2 | :   : -2x(1-x^2) : 證明 f'(x) = ____________ : |1-x^2| : 虛心請益  分開討論 (i) 0 ≦ |x| < 1 (-2x) * (1-x^2) f(x) = 1 - x^2 => f'(x) = -2x = ------------------- 1 - x^2 (-2x) * (1-x^2) = ----------------- | 1 - x^2 | (ii) |x| > 1 (-2x) * (1-x^2) f(x) = x^2 - 1 => f'(x) = 2x = -------------------- x^2 - 1 (-2x) * (1-x^2) = ----------------- | 1 - x^2 | (iii) |x| = 1 f(1) = f(-1) = 0 f(x) - f(1) x^2 - 1 lim ---------------- = lim ------------ = 2 x → 1+ x - 1 x → 1+ x - 1 lim f(x) - f(1) 1 - x^2 x → 1- ------------- = lim ------------ = -2 x - 1 x → 1- x - 1 => f 在 x = 1 不可微 同理 f 在 x = -1 不可微 (-2x) * (1-x^2) ∴ f'(x) = ------------------- , |x|≠1 | 1 - x^2 | -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.127.98.50