看板 trans_math 關於我們 聯絡資訊
※ 引述《shallow1112 (小扯)》之銘言: : 不好意思 : 有10題 : 麻煩大家了 : 謝謝 : 1.A Deposit $P made into a fund with an annual interest rate of r : . Fund the time (in years) necessary to double if the interest is : compounded continuously. : 2.determine the convergence or divergence for the following series: : ∞ n! ∞ n! : (a)Σ --- (b)Σ --- : n=1 n^n n=1 10^n : 3.For what values of η (demand elasticity of price, η>0) is the : demand function p=37x^(-1/η) elastic, where p is the price of x? : x-4 : 4.Find all intervals of x on which y=------- is concave down. : x+4 : dy siny : 5.Find ---- for y^3+------=㏑√cosx +4x : dx e^y : 6.Find the area of the region bounded by the graphs of y=x^2 and y=2-x^2. : 7.Find the integral ∫e^3xsin4xdx. : 8.Please use (a) Trapezoidal rule, and (b) Simpson rule both with n=4 to : 3 : approximate ∫ (x+2)^3 dx. : 1 (b)辛普森法則 (Simpson Rule) 將區間 [a,b] n等分 , n 為偶數 , 其等分點為 x_0 , x_1 , ... , x_n , x_0 = a , x_n = b , x_(n-1) , x_i , i = 1 , 2 , ... , n (i)(b - a) x_i = a + ---------- , i = 1 , 2 , ... , n n b ∫ f(x) dx a b - a ≒ (-----)(f(x_0)+f(x_n)+4(f(x_1)+f(x_3)+...+f(x_(n-1)))+ 3n 2(f(x_2) + f(x_4) + ... + f(x_(n-2)))) x_0 = 1 (1)(3-1) x_1 = 1 + -------- = 1.5 4 (2)(3-1) x_2 = 1 + -------- = 2 4 (3)(3-1) x_3 = 1 + -------- = 2.5 4 x_4 = 3 3 ∫ (x+2)^3 dx 1 (3-1) ≒ (-----)(f(1)+f(3)+4*(f(1.5)+f(2.5))+2*f(2)) 3*4 1 = (---)(3^3 + 5^3 + 4*((3.5)^3 + (4.5)^3) + 2*(4^3)) = 136 6 : 9.Find the Maclaurin sreies representation for f(x)=e^(-x^2) , then : (49) : find f (0). : 10.John擬於下月1日向某車商購置一輛新車,車商現在有兩種優惠方案,一為現金價; : 按原定價P元折抵X元(X<P),一次付清;二為五年低利(年利率r)分期付款;依定價P元計 : 算,每月底還款Y元,試問John應如何比較此兩方案以節省荷包(假設五年內市場年利率 : 維持固定為i,且i>r)? : 想請問一下 : 我有看到麥克勞林級數 : 請問這是會考的重點嗎??? : 還有大約考哪些重點呢? : 我快嚇死了啦!我的天阿 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21