看板 trans_math 關於我們 聯絡資訊
※ 引述《JULIKEBEN (JU)》之銘言: : the length of the portion , cut off by x-axis and y-axis , of any tangent line to the curve : x^(2/3)+y^(2/3)=4 is : a.2 b.4 c.8 d.none of above : 請問要怎麼下手呢?? : 謝謝 設點P(x_0 , y_0)為位於 x^(2/3) + y^(2/3) = 4 第一象限上的點 則 x_0 > 0 , y_0 > 0 , 且 (x_0)^(2/3) + (y_0)^(2/3) = 4 x^(2/3) + y^(2/3) = 4 , 將方程式等號兩邊對x微分得 2 -1 2 -1 dy (---)(x^(---)) + (---)(y^(---))(----) = 0 3 3 3 3 dx dy y^(1/3) => ---- = - -------- dx x^(1/3) dy | (y_0)^(1/3) => ----| = - ----------- dx |(x_0 , y_0) (x_0)^(1/3) 所以過P之切線方程式為 (y_0)^(1/3) y - y_0 = - (-----------)(x - x_0) (x_0)^(1/3) 令 y = 0 => ((x_0)^(1/3))(y_0) = ((y_0)^(1/3))(x - x_0) => x - x_0 = ((x_0)^(1/3))((y_0)^(2/3)) => x = ((x_0)^(1/3))((x_0)^(2/3) + (y_0)^(2/3)) = (4)((x_0)^(1/3)) 令 A ((4)((x_0)^(1/3)) , 0) 令 x = 0 => y - y_0 = ((y_0)^(1/3))((x_0)^(2/3)) => y = ((y_0)^(1/3))((x_0)^(2/3) + (y_0)^(2/3)) = (4)((y_0)^(1/3)) 令 B (0 , (4)((y_0)^(1/3))) 線段AB的長度 = √(((4)((x_0)^(1/3)))^2 + ((4)((y_0)^(1/3)))^2) = √((16)((x_0)^(2/3) + (y_0)^(2/3))) = √(16*4) = √64 = 8 故選c -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.66.56
JULIKEBEN:謝謝 懂了 118.169.98.243 07/07 17:18