看板 trans_math 關於我們 聯絡資訊
※ 引述《flygey (努力達成目標)》之銘言: : The point no the ellipse 4x^2+9y^2=36,that is nearest the origin is ________ : 請問版友這題如何算 : 感謝 令 f(x,y) = x^2 + y^2 , g(x,y) = 4x^2 + 9y^2 - 36 F(x,y) = f(x,y) + (λ)(g(x,y)) = x^2 + y^2 + (λ)(4x^2 + 9y^2 - 36) Fx = 2x + (λ)(8x) = 0 => (2x)(1 + 4λ) = 0 -1 => x = 0 或 λ = --- ------(1) 4 Fy = 2y + (λ)(18y) = 0 => (2y)(1 + 9λ) = 0 -1 => y = 0 或 λ = --- ------(2) 9 由(1)和(2)得 -1 -1 λ = --- 且 λ = --- 明顯不合 4 9 (x,y) = (0 , 2) , (0 , -2) , (3 , 0) , (-3 , 0) f(0,2) = 4 f(0,-2) = 4 f(3,0) = 9 f(-3,0) = 9 所以當(x,y) = (0,2) , (0,-2) 時 , f(x,y)有最小值4 , 即離原點最短距離為2 另解 x^2 y^2 4x^2 + 9y^2 = 36 => ----- + ----- = 1 9 4 畫xy座標圖得知 x^2 y^2 在橢圓 ----- + ----- = 1 上離原點最近的點為 (0,2)和(0,-2) 9 4 因此最短距離為 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21