看板 trans_math 關於我們 聯絡資訊
Let f be a real-valued differentiable function on R s.t f'(x)>f(x) for all real number x. Assume that f(0)=0 show that f(x)>0 for all x >0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.48.173
LeoRen:若f(x)>0 => f'(x)/f(x) >1 => lnf(x)>x118.161.144.169 07/08 01:27
LeoRen:=> f(x)>e^x, f(0)>1 矛盾!118.161.144.169 07/08 01:28
LeoRen:lnf(x)>x+c =>f(x)>exp(x+c),f(0)>0 矛盾118.161.144.169 07/08 01:34
t0127754:所以題目錯了? 118.169.48.173 07/08 01:38
t0127754:不對阿 那是不定積分 要加常數C 才會對 118.169.48.173 07/08 01:39
t0127754:應該沒有矛盾吧 118.169.48.173 07/08 01:40
LeoRen:看我所舉的反例是否無誤,若是那題目就有誤118.161.144.169 07/08 01:42
LeoRen:第3行便是118.161.144.169 07/08 01:43
LeoRen:第2行是c=0的特例118.161.144.169 07/08 01:44
Dazaiosamu:科218.174.107.186 07/08 20:56
muxiv : 所以題目錯了? https://moxox.com 04/22 17:57