看板 trans_math 關於我們 聯絡資訊
※ 引述《monene5566 (機掰凱文)》之銘言: : 2 2 : Let f:| R --> | R be differentiable . Given u=(3/5,4/5), v=(4/5,-3/5) : 2 ' 2 ' 2 : prove that | gradient f | = |f_u| + |f_v| : ' ' : where f_u and f_v are the directional derivative of f in the direction : of u and v : 這題不知道該怎樣證 連第一步要怎樣進行都無頭緒 : 請版友解題了 謝謝:) let ▽f=(f1)i+(f2)j => |▽f|^2 = (f1)^2 +(f2)^2 f'u=▽f.u = ((f1)i+(f2)j).(3/5,4/5) = 3f1/5 + 4f2/5 f'v=▽f.v = ((f1)i+(f2)j).(4/5,-3/5) = 4f1/5 - 3f2/5 |f'u|^2 + |f'v|^2 = (3f1/5 + 4f2/5)^2 + (4f1/5 - 3f2/5)^2 = (f1)^2 +(f2)^2 = |▽f|^2 得證 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.161.144.169 ※ 編輯: LeoRen 來自: 118.161.144.169 (07/08 00:29)
monene5566:原來是這樣 謝謝:) 118.166.64.183 07/08 00:33