看板 trans_math 關於我們 聯絡資訊
※ 引述《JULIKEBEN (JU)》之銘言: : let f: R→R be twice differentiable . : if f'' is nowhere vanishing , then f has at most two distinct real roots. we given f have three roots x1,x2,x3 let x1>x2>x3 and then we know f(x1)=f(x2)=(x3) so according to Roll's T.H.M. know have c1 on ( x1,x2) ,c2 on(x2,x3> let f'(x1)=0 ,f'(x2)=0 because f'(x1)=f'(x2)=0 and according to Roll's T.H.M have c3 on <x1,x2> let f''(c3)=0 but f'' is nowhere vanishing so f only have two distinct : 請問高手 : 這題該如何解?? : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.117.120.221