看板 trans_math 關於我們 聯絡資訊
※ 引述《stillboy (joey)》之銘言: : ※ 引述《JULIKEBEN (JU)》之銘言: : : let f: R→R be twice differentiable . : : if f'' is nowhere vanishing , then f has at most two distinct real roots. : we given f have three roots x1,x2,x3 let x1>x2>x3 : and then we know f(x1)=f(x2)=(x3) : so according to Roll's T.H.M. know : have c1 on ( x1,x2) ,c2 on(x2,x3> let f'(x1)=0 ,f'(x2)=0 ^^^^^^^^^^^^^^^^^^^ f'(c1)=0 ,f'(c2)=0 : because f'(x1)=f'(x2)=0 and according to Roll's T.H.M ^^^^^^^^^^^^^^^^ f'(c1)=f'(c2)=0 希望沒弄錯你的意思 : have c3 on <x1,x2> let f''(c3)=0 but f'' is nowhere vanishing : so f only have two distinct : : 請問高手 : : 這題該如何解?? : : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.115.226
stillboy:不好意思=.=是c1,c2140.117.120.221 07/08 15:32
stillboy:電腦打字就是會有這種毛病,囧140.117.120.221 07/08 15:32
JULIKEBEN:thanks118.169.101.240 07/09 13:35