看板 trans_math 關於我們 聯絡資訊
※ 引述《gghh711 (lara)》之銘言: : 1.試求x=y^2,x=4為界的區域,繞著x=-1旋轉所包圍的體積 : Ans:1088π/15 : 2.試求y=4x,y=x/2,y=1/x與x>0 所包圍的面積 : Ans:3ln2/2 將 y = 4x , y = x/2 , y = 1/x , x > 0 畫在xy平面得 y = 4x => (x,y) = (0,0) y = x/2 y = 4x 1 => (x,y) = (--- , 2) y = 1/x 2 y = x/2 1 => (x,y) = (√2 , ----) y = 1/x √2 1/2 x √2 1 x 所求面積 = ∫ 4x - --- dx + ∫ --- - --- dx 0 2 1/2 x 2 x^2 |1/2 x^2 |√2 = (2)(x^2) - --- | + ln|x| - --- | 4 |0 4 |1/2 1 1 ln2 1 1 = (--- - ----) + (--- - ---) - (-ln2 - ----) 2 16 2 2 16 ln2 3 = --- + ln2 = (---)(ln2) 2 2 : 3.Consider the plane region R(t)={(x,y)│0<=x<=t,0<=y<=1/(1+x^2)},let : V(t)be the volume of the solid obtained by revolving R(t)about the x-axis : ,then lim V(t)=? : t=>無窮 : Ans:π^2/4 : 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21