看板 trans_math 關於我們 聯絡資訊
※ 引述《dodo1654 (secret)》之銘言: : 1.Compute the following limit: : 1 n : (a) lim - Σ √[(3i/n)^7+(3i/n)^4] : n→∞ n i=1 : X 1 : (b) lim [ (-----)-(-----)]. : n→∞ lnX X-1 : x : e ln(x+e) 1 : 2.Let f(x)=∫ -------------- dx defined on (-1,∞). : 1 √(x^4+x^2+5) : (a) Show that f is a strictly increasing function. : -1 : (b) Find (f )'(0). : 1 -2/3 : 3.Compute the improper integral ∫ x lnx dx. : 0 1 ∫ (x^(-2/3))(lnx) dx 0 1 = lim ∫ (x^(-2/3))(lnx) dx R→0+ R |1 1 1 = lim (3)(x^(1/3))(lnx) | - ∫ (3)(x^(1/3))(---) dx R→0+ |R R x (令 u = lnx , dv = x^(-2/3) dx , 則 du = 1/x dx , v = (3)(x^(1/3)) ) 1 = lim (-3)(R^(1/3))(ln(R)) - ∫ (3)(x^(-2/3)) dx R→0+ R ln(R) |1 = lim (-3)(----------) - (9)(x^(1/3)) | R→0+ R^(-1/3) |R 1/(R) = lim (-3)(------------------) - (9)(1 - R^(1/3)) R→0+ (-1/3)(R^(-4/3)) = -9 + (9)(lim R^(1/3)) R→0+ = -9 + (9)*(0) = -9 : ∞ n n n : 4.Find the radius of convergence of the infinite series Σ (------) x . : n=0 2n+1 : 5.Let f be a real valued function defined on R with f"(x)>0 for all x. Show : that f(x) ≧ f'(0)x + f(0) for all x. : 1 √(1-x^2 ) 2 2 : 6.Compute the iterated integral ∫∫ sin(x +y )dydx. : 0 0 :                               1 8 : 7.Find the local extreme values of the function f(x,y)= xy +-+- for xy ≠ 0. :                               x y : 8.Use the method of Lagrange Multiplier to find the maximum value of the : 3 : function f(x,y,z) = x+3y-2z defined on R subject to the constraint : 2 2 2 : x +y +z =14. : 以上也煩請版上的高手大大們幫忙解惑一下 : 感謝! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.66.173.21