看板 trans_math 關於我們 聯絡資訊
※ 引述《phantom997 (囧)》之銘言: : 1.Prove that lim f(x)=L lim f(x)=M, : x->c x->c : then L=M 設 L =/= M 不失一般性下 設 L > M 由 lim f(x) = L 知 選定一任意小之正e < │M-L│/2 可找到一d使│f(x)-L│< e, 0 <│x-c│< d 且同時又滿足│f(x)-M│> │L-M│-│f(x)-L│>│M-L│/2 顯然與lim f(x) = M極限的定義牴觸 x->c 所以矛盾 => L = M得證 : 2.Suppose that lim f(x)=L and that f(a) exists(though it : x->a : maybe different from L).Prove that f is bounded on some : interval containing a;that is,show that there is an interval : (c,d) with c<a<d and a constant M such that |f(x)| < M : = : for all x in (c,d). : 謝謝大家囉!! lim f(x)=L x->a 選定任意小之e 可找到k使得 │f(x)-L│< e, 0 <│x-a│< k => L-e < f(x) < L+e , a-k < x < a+k 令c = a-k d = a+k choses M >= max(│L│+ e , │f(a)│) then │f(x)│<= M for all x in (c,d) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.124.101.106
Qmmm:謝謝~ 202.151.60.129 09/29 11:19
Qmmm:推錯篇 = = 202.151.60.129 09/29 11:19