看板 trans_math 關於我們 聯絡資訊
※ 引述《Honor1984 (希望願望成真)》之銘言: ※ 引述《Honor1984 (希望願望成真)》之銘言: ※ 引述《Qmmm (Q蛆蛆)》之銘言: : 設a_1+ a_2+ ....+ a_n= 3n^2 : 求 lim [ √(a_2+ a_4+ ...+ a_(2n))- √(a_1+ a_3+ a_5+ ...+ a_(2n-1))]= ? : n→∞ (省略) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.124.105.166
andy2007:原來如此 還有一個問題140.125.205.230 09/29 14:09
andy2007:A = Σ3[2*2k-1] = 6(n+1)n - 3n140.125.205.230 09/29 14:09
andy2007:那個是算偶數項的總和嗎?那個2K是...140.125.205.230 09/29 14:10
andy2007:最後n是怎麼來的? ...麻煩了Orz...140.125.205.230 09/29 14:11
Honor1984:是算偶數項總和沒錯 但我用2k表示,k為連122.124.105.166 09/29 14:34
Honor1984:續整數 只是計算方法的問題122.124.105.166 09/29 14:34
andy2007:是3(2n-1) n用2k代入嗎 我糊塗了140.125.205.230 09/29 15:11
a_n = 3(2n-1) a_2k = 3(4k-1) 當 n = 2k 也就是n是偶數的情況 a_n = a_2k 這沒有問題吧?
andy2007:逆推 3n[2(n+1)-1] 好像怪怪的140.125.205.230 09/29 15:26
請交代一下你的逆推過程 我想知道逆推的方式
changefly:A = Σ3[2*2k-1] = 6(n+1)n - 3n 59.124.112.124 09/29 15:29
changefly:請問這段是如何整理出來的呢? 59.124.112.124 09/29 15:29
A = a_2+ a_4+ ...+ a_(2n) = Σa_2k for k = 1 to n = Σ3(4k-1) = [12Σk] - 3n = 6n(n+1) - 3n P.S. Σk for k = 1 to n = n(n+1)/2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.124.107.17 ※ 編輯: Honor1984 來自: 122.124.107.17 (09/30 00:06)
andy2007:6(n+1)n - 3n → 3n[2(n+1)-1] 140.125.205.230 09/30 08:00
andy2007:我是直接提出公因式140.125.205.230 09/30 08:00
andy2007:沒有運用到級數的概念Orz...我錯了140.125.205.230 09/30 08:01
andy2007:感謝高手指導 我真是數學天兵 Orz...140.125.205.230 09/30 08:02
changefly:原來如此,我忘了基本觀念了,感謝!! 59.124.112.124 09/30 14:25