因為f在x=0連續
lim f(x) lim f(x)
所以x->0- = x->0+
-1
p(tan x) + q √((x^2)+x+1)-2x+2 sin(5x)
lim ---------------------------------- = lim -------
x->0- x x->0+ x
-1
p(tan x) + q √((x^2)+x+1)-2x+2 sin(5x) 5x
=> lim --------------------------------- = lim [ -------* ---- ] = 5
x->0- x x->0+ 5x x
-1
p(tan x) + q √((x^2)+x+1)-2x+2
=> lim ---------------------------------- x = 5*0 = 0
x->0- x
-1
所以 lim [p(tan x) + q √((x^2)+x+1)-2x+2] = 0
x->0-
=> p*0 + q*1 -0 + 2 = 0 => q = -2
 ̄ ̄ ̄
-1
p(tan x) -2 √((x^2)+x+1)-2x+2 0
所以 lim f(x) = lim ------------------------------------- (~ ---)
x->0- x->0- x 0
Using L'hopital's Rule
p/(1+x^2) - (2x + 1)/√((x^2)+x+1) -2
上式 = lim ---------------------------------------- = 5
x->0- 1
=> p -1 -2 = 5 => p= 8
 ̄ ̄
有錯請指教!
※ 引述《JULIKEBEN (JU)》之銘言:
: let p,q 屬於 R and let f(x) : R→R be a function
: assume that f(x) is continuous at 0 and assume that
: sin(5x)
: --------- ,when x > 0
: x
: f(x) = { }
: -1
: p(tan x) + q √((x^2)+x+1)-2x+2
: ----------------------------------- , when x < 0
: x
: evaluate the values p and q
: 我想問關於X<0的部分
: -1
: p(tan x) +√((x^2)+x+1)-2x+2
: lim ---------------------------------- = 5
: - x
: x→0
: -1
: (tan x)的部分要怎樣處理
: 請高手指教
: 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 119.14.157.130