推 Qmmm:謝謝!! 119.14.157.130 10/22 22:17
※ 引述《Qmmm (..Q3M..)》之銘言:
: 1 (n) P_n (x)
: 若f(x) = ------------ k為實數 , 且 f (x) = -----------------
: (x^k) - 1 [(x^k)-1]^(n+1)
: 求P_n (1) = ?
k
- k x k
f'(x)=───── , P (x) =- k x
(x^k-1)^2 1
k n k
(n+1) 1 (n+1)k(x -1) x
f (x) = P'(x) ─────── - ──────── P (x)
n (x^k-1)^(n+1) (x^k-1)^(2n+2) n
k
(x^k-1)P_n'(x) - (n+1)kx P_n(x)
= ────────────────
(x^k-1)^(n+2)
k k
hence P (x) = (x -1) P '(x) - nkx P (x)
n n-1 n-1
(偷偷把n+1改回n)
而 P (1) = 0 - n k P (1)
n n-1
2
= n(n-1)k P (1)
n-2
n-1 n-1
= n(n-1)…2 k P (1) (-1)
1
n n
= n! k (-1)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.243.42
※ 編輯: PaulErdos 來自: 140.112.243.42 (10/22 22:06)
※ 編輯: PaulErdos 來自: 140.112.243.42 (10/22 22:10)