看板 trans_math 關於我們 聯絡資訊
※ 引述《shallow1112 (小扯)》之銘言: : lim =(x-π/4)^2/(tanx-1)^2 : x->π/4 : 不好意思 : 麻煩大家了 (x - π/4)^2 原題= l i m ---------------------- x->π/4 (tanx)^2 - 2tanx + 1 [(cosx)^2]*[(x - π/4)^2] = l i m ------------------------------------- x->π/4 [(sinx)^2] - 2sinxcosx + [(cosx)^2] [(cosx)^2]*[(x - π/4)^2] = l i m ----------------------------- x->π/4 1 - 2sinxcosx 令u = x - π/4 , 當 x -> π/4時 , u -> 0 (u^2)*{[√2/2](cosu - sinu)}^2 上式 = l i m ------------------------------ u ->0 1 - cos2u (1/2)(u^2)*[(cosu - sinu)^2] [(2u)^2]/2 = l i m {----------------------------- * -------------} u ->0 [(2u)^2]/2 1 - cos2u = (1/4) * 1 = 1/4 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.70.179.171