→ Qmmm:1.x=0為C.P.,f(0)=0為 absolute minmum. 140.112.128.93 11/10 00:02
→ Qmmm:f(0) < f(x) , for all x>0 140.112.128.93 11/10 00:02
推 TaiwanFlight:1. let cosx=-1 then f'(x)=(1/2)x^2210.240.176.170 11/10 00:03
→ TaiwanFlight:>0 for all x210.240.176.170 11/10 00:03
→ TaiwanFlight:so f(x)遞增210.240.176.170 11/10 00:03
→ Qmmm:2.少了f在(a,b)可微的條件 140.112.128.93 11/10 00:03
→ TaiwanFlight:2. by Thm , true210.240.176.170 11/10 00:04
→ TaiwanFlight:critical point是什麼點?210.240.176.170 11/10 00:05
推 TaiwanFlight:2.f在[a,b]連續且f(x)=f(b)210.240.176.170 11/10 00:12
→ TaiwanFlight:則f至少有一個臨界點在(a,b)210.240.176.170 11/10 00:12
→ TaiwanFlight:f不需要可微210.240.176.170 11/10 00:13
→ TaiwanFlight: f(a)210.240.176.170 11/10 00:13
→ victor7935:那這樣是要有哪個定義證?!!140.123.221.147 11/10 00:17
→ victor7935: 用140.123.221.147 11/10 00:19
※ 編輯: victor7935 來自: 140.123.221.147 (11/10 00:20)
→ Qmmm: 2. 考慮f(x)=|x| ,f is cont. everywhere 140.112.128.93 11/10 00:21
→ Qmmm:f(1)=f(-1) 但f在(-1,1)不可微 140.112.128.93 11/10 00:22
※ 編輯: victor7935 來自: 140.123.221.147 (11/10 00:22)
推 TaiwanFlight:2. set f(x)=1 ,x no critical point210.240.176.170 11/10 00:25
→ victor7935:所以不可微那點就是critical point!!140.123.221.147 11/10 00:27
→ victor7935:是降嗎?140.123.221.147 11/10 00:27
→ Qmmm:嗯嗯~~ 不存在點也是臨界點 抱歉忘了^^" 140.112.128.93 11/10 00:29
→ victor7935:那就是分2種討論!? 1.可微..by MVT140.123.221.147 11/10 00:32
→ victor7935:因為f(a)=f(b) ..f'(c)=0 ..2不可微.140.123.221.147 11/10 00:33
→ victor7935:之點及是臨界點...這樣寫ok?140.123.221.147 11/10 00:33
推 TaiwanFlight:3.(a) let f(x)=sin(x)210.240.176.170 11/10 00:46
推 TaiwanFlight:3.(b) let f(x)=sec(x);(-pi/2,pi/2)210.240.176.170 11/10 00:51
推 TaiwanFlight:4. x=0.104719667帶入210.240.176.170 11/10 00:53