看板 trans_math 關於我們 聯絡資訊
※ 引述《JULIKEBEN (啾西)》之銘言: : 兀/4 : ∫ ln(1+tanx)dx : 0 : 想問怎麼下手 : 請高手指教謝謝 1+tanx = (cosx+sinx)/cosx = [sin(π/2-x)+sinx]/cosx sin(A+B) = sinAcosB + cosAsinB sin(A-B) = sinAcosB - cosAsinB ─────────────── sin(A+B) + sin(A-B) = 2sinAcosB A + B = π/2-x A - B = x 2A = π/2 => A = π/4 => B = π/4-x sin(π/2-x)+sinx = 2sin(π/4)cos(π/4-x) = 2(√2/2)cos(π/4-x) = √2cos(π/4-x) 1+tanx = √2cos(π/4-x)/cosx π/4 π/4 ∫ ㏑(1+tanx)dx = ∫ ㏑( √2 cos(π/4-x) / cosx )dx 0 0 π/4 π/4 π/4 = ∫ ㏑( √2 )dx + ∫ ㏑( cos(π/4-x) )dx - ∫ ㏑(cosx)dx 0 0 0 ( Let X = π/4-x => dX = -dx,x = 0~π/4 => X = π/4~0 ) 0 π/4 = (π/4)㏑( √2 ) - ∫ ㏑(cosX)dX - ∫ ㏑(cosx)dx π/4 0 π/4 π/4 = (π/8)㏑2 + ∫ ㏑(cosx)dx - ∫ ㏑(cosx)dx 0 0 = (π/8)㏑2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.160.211.123
JULIKEBEN:thanks=) 118.169.99.232 01/15 17:47
andy74139:sin(A+B)-sin(A-B)應該是2cosAsinB吧? 59.121.4.199 02/01 22:00
※ 編輯: Frobenius 來自: 140.109.112.96 (01/03 20:28)
Frobenius:sin(A+B)+sin(A-B)=2cosAcosB 已修正為2sinAcosB,感謝^^ 01/03 20:28