作者Frobenius (▽.(▽×▽φ)=0)
看板trans_math
標題Re: [積分] 定積分
時間Thu Jan 15 17:24:56 2009
※ 引述《JULIKEBEN (啾西)》之銘言:
: 兀/4
: ∫ ln(1+tanx)dx
: 0
: 想問怎麼下手
: 請高手指教謝謝
1+tanx = (cosx+sinx)/cosx = [sin(π/2-x)+sinx]/cosx
sin(A+B) = sinAcosB + cosAsinB
sin(A-B) = sinAcosB - cosAsinB
───────────────
sin(A+B) + sin(A-B) = 2sinAcosB
A + B = π/2-x
A - B = x
2A = π/2 => A = π/4 => B = π/4-x
sin(π/2-x)+sinx = 2sin(π/4)cos(π/4-x) = 2(√2/2)cos(π/4-x) = √2cos(π/4-x)
1+tanx = √2cos(π/4-x)/cosx
π/4 π/4
∫ ㏑(1+tanx)dx = ∫ ㏑( √2 cos(π/4-x) / cosx )dx
0 0
π/4 π/4 π/4
= ∫ ㏑( √2 )dx + ∫ ㏑( cos(π/4-x) )dx - ∫ ㏑(cosx)dx
0 0 0
( Let X = π/4-x => dX = -dx,x = 0~π/4 => X = π/4~0 )
0 π/4
= (π/4)㏑( √2 ) - ∫ ㏑(cosX)dX - ∫ ㏑(cosx)dx
π/4 0
π/4 π/4
= (π/8)㏑2 + ∫ ㏑(cosx)dx - ∫ ㏑(cosx)dx
0 0
= (π/8)㏑2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.160.211.123
→ JULIKEBEN:thanks=) 118.169.99.232 01/15 17:47
→ andy74139:sin(A+B)-sin(A-B)應該是2cosAsinB吧? 59.121.4.199 02/01 22:00
※ 編輯: Frobenius 來自: 140.109.112.96 (01/03 20:28)
→ Frobenius:sin(A+B)+sin(A-B)=2cosAcosB 已修正為2sinAcosB,感謝^^ 01/03 20:28