作者mathmanliu (煩惱即是菩提)
看板trans_math
標題Re: [積分] 弧長
時間Tue Mar 10 13:25:42 2009
※ 引述《Qmmm (S=K*lnΩ)》之銘言:
: 清大
: 4 2 125
: 求曲線y= ( --- x + 1 )^(3/2) , 自(0,1)至(2,---) 之弧長
: 9 7
: ans:110/27
3
參數式,設 x= ─ tant, y= (sect)^3, 0 <= t <= arctan(4/3) , 設 tan(a)= 4/3
2
ds 2 9
(──) = ─ (sect)^4 + 9 (sect)^6 (tant)^2
dt 4
9
= ─(sect)^4 [ 1+ 4(sect tant)^2 ]
4
9
= ─(sect)^8 [ (cost)^4 + 4(sint)^2]
4
9
= ─ (sect)^8 [ (1-sin^2 t)^2 + 4sin^2 t ]
4
9
= ─ (sect)^8 (1+sin^2 t)^2
4
ds 3 1+(sint)^2 3 2-(cost)^2
=> ─ = ─ ────── = ─ ─────
dt 2 (cost)^4 2 (cost)^4
3 a
總弧長= ─ ∫ 2(sect)^4 - (sect)^2 dt
2 0
3 a
= ─∫ 2(sect)^2 (tant)^2 + (sect)^2 dt
2 0
3 2 4
= ─[─(tant)^3+ tant ] 代 t=0~ a (註: tan(a)= ─ )
2 3 3
64 118
= ─ + 2 = ──
27 27
--
請參觀yahoo遊藝數學
http://tw.group.knowledge.yahoo.com/math-etm
不虛此行喔!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.124.25.76
推 OKOK98:謝謝你 我發現我哪裡算錯了!! 答案沒錯140.114.216.145 03/10 13:54
推 Qmmm:謝謝^^ 219.70.179.23 03/10 21:03