看板 trans_math 關於我們 聯絡資訊
※ 引述《Qmmm (S=K*lnΩ)》之銘言: : 清大 : 4 2 125 : 求曲線y= ( --- x + 1 )^(3/2) , 自(0,1)至(2,---) 之弧長 : 9 7 : ans:110/27 3 參數式,設 x= ─ tant, y= (sect)^3, 0 <= t <= arctan(4/3) , 設 tan(a)= 4/3 2 ds 2 9 (──) = ─ (sect)^4 + 9 (sect)^6 (tant)^2 dt 4 9 = ─(sect)^4 [ 1+ 4(sect tant)^2 ] 4 9 = ─(sect)^8 [ (cost)^4 + 4(sint)^2] 4 9 = ─ (sect)^8 [ (1-sin^2 t)^2 + 4sin^2 t ] 4 9 = ─ (sect)^8 (1+sin^2 t)^2 4 ds 3 1+(sint)^2 3 2-(cost)^2 => ─ = ─ ────── = ─ ───── dt 2 (cost)^4 2 (cost)^4 3 a 總弧長= ─ ∫ 2(sect)^4 - (sect)^2 dt 2 0 3 a = ─∫ 2(sect)^2 (tant)^2 + (sect)^2 dt 2 0 3 2 4 = ─[─(tant)^3+ tant ] 代 t=0~ a (註: tan(a)= ─ ) 2 3 3 64 118 = ─ + 2 = ── 27 27 -- 請參觀yahoo遊藝數學 http://tw.group.knowledge.yahoo.com/math-etm 不虛此行喔! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.124.25.76
OKOK98:謝謝你 我發現我哪裡算錯了!! 答案沒錯140.114.216.145 03/10 13:54
Qmmm:謝謝^^ 219.70.179.23 03/10 21:03