看板 trans_math 關於我們 聯絡資訊
※ 引述interval of convergence《joyce123 radius of convergence(星稀)》之銘言: : Find the radius of convergence(收歛半徑) and interval of convergence (收歛區間 : n n : ∞ (-5) x : ) of the series Σ ----------- : n=0 √(n+1) : 請各位高手解答~ 感謝^^ Let a_n = (-5)^n x^n / √(n+1) a_n+1 √(n+1) ---- = -5x -------- a_n √(n+2) lim |a_n+1/a_n| = |5x| n->oo By ratio test , |5x| < 1 converges. => |x|< 1/5 , the radius of convergence is 1/5 If x=1/5 , a_n = (-1)^n/√(n+1) By 交錯級數test, we know that Σa_n converges If x=-1/5 _____ => a_n = 1/√(n+1) √(n+1) < √(n+n) 1/√(n+1) > 1/(√2*√n) Σ1/√(n+1) > Σ1/(√2*√n) By p-series test , we know that Σ1/(√2*√n) diverges. By comparison test , we know that Σ1/√(n+1) diverges. Hence , the interval of convergence is (-1/5 , 1/5] 有錯請指正 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.168.22.150