看板 trans_math 關於我們 聯絡資訊
※ 引述《BIEGABOY (BIEGABOY)》之銘言: : Let the sequence an=(1+1/n)^n : 1.show that an is increasing. Proof: Let f(x)=(1+1/x)^x f(x_n)=a_n x_1=1,x_2=2...,x_n=n 取自然對數 F(x)=ln[f(x)]=x*ln(1+1/x)=x*ln[(x+1)/x ] (裡面變假分式) 遞增遞減性仍與原函數相同 x x-(x+1) 考慮 F'(x)=ln[(x+1)/x ]+x* -------------- * -------------- x + 1 x^2 =ln[(x+1)/x ] - (1/x+1) claim : F'(x) > 0 for all x>=1 since 1. F'(1)=ln2-1/2 >0 2. F"(x)= (x/x+1) - (-1)*(x+1)^(-2) > 0 所以F'(x) >0 => F(x) 遞增 => f(x)遞增 => f(x_n+1) > f(x_n) => a_n+1 > a_n for all n>=1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.93.114 ※ 編輯: gkaok2 來自: 140.113.22.70 (02/09 08:53)