看板 trans_math 關於我們 聯絡資訊
※ 引述《bighte95016 (笨明)》之銘言: : 求 |sinx+cosx+tanx+cotx+secx+cscx| 的最小值?? : 請教微積分高手幫忙求解0.0 --- 令 z = tan(x/2) = tan(ψ) 則: f(x) = │ sin(x) + cos(x) + tan(x) + cot(x) + sec(x) + csc(x)│ 2z + 1-z^2 1 + z 1 = │ ────── + ─── + ── │          1 + z^2 1 - z z cosψ + sinψ = │ sin(2ψ) + cos(2ψ) + ─────── + cotψ│ cosψ - sinψ (denote)      = g(ψ) let g'(ψ) = 0 2 1 => 2[cos(2ψ) - sin(2ψ)] + ───────── - ───── = 0 (cosψ - sinψ)^2 (sinψ)^2 ( denote c = cosψ & s = sinψ in order to simplify the eq. ) 2 1 => 2(c-s)^2 - 4s^2 + ──── - ── = 0 (c-s)^2 s^2 2(c-s)^4 + 2 4s^4 + 1 => ────── = ──── (c-s)^2 s^2 4 2 2 2 4 2 => 2(c-s) *s + 2s = 4(c-s) *s + (c-s) 2 2 2 2 => [2(c-s) *s - 1][(c-s) - 2s ] = 0 => sin(x) + cos(x) = 1 ± √2 or tan(x)=1 when sin(x) + cos(x) = 1 ± √2 => sin(x)*cos(x) = 1 ± √2 1 + sin(x) + cos(x) and f(x) = | sin(x) + cos(x) + ────────── | sin(x)*cos(x) = 2√2 ± 1 when tan(x)=1 => f(x) = 3√2 ± 2 所以 min{f(x)} = 2√2 - 1 , 發生於 sin(x) + cos(x) = 1 - √2 ----- 分隔線 ----- 剛剛有想到另外一做法   令 m = sin(x) + cos(x) n = sin(x)*cos(x) 則題目可以改寫成: f(x) = h(m,n) = │ m + n + (m/n)│ constrain with m^2 = 1 + 2n 可以用 Lagrange multiplier 去解它 這個做法就留給原 po 練習看看 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.211.136 ※ 編輯: doom8199 來自: 140.113.211.136 (05/01 02:47)
bighte95016:感謝高手解答!!140.117.211.116 05/01 10:27
suker:x=-π/4 ; =0? 118.169.82.149 05/01 19:24
a016258: =2*sqrt(2) 吧? 114.45.91.242 05/01 20:09
suker:我打錯了 XD 118.169.82.149 05/01 20:15
znmkhxrw:怎麼直接對絕對值函數│f(x)│微分阿?? 1.169.129.100 05/01 20:40
znmkhxrw:在 g(ψ)=│‧‧│ 那邊 1.169.129.100 05/01 20:40
doom8199:把 │f│看成 √(f^2) , 則140.113.211.136 05/01 21:29
doom8199:(|f|)' = 2ff'/[2√(f^2)]140.113.211.136 05/01 21:31
doom8199: = f'*(f/|f|)140.113.211.136 05/01 21:32