看板 trans_math 關於我們 聯絡資訊
※ 引述《arebecca455 (sg)》之銘言: : http://ppt.cc/acxU : 想請問第7題 第11題 : 第11題讓我想到高中微積分 : 但他沒有給幾次方 我要怎麼設呢? : 希望大家可以幫我解惑 謝謝 7. Use integral by Parts 1 1 ∫xf''(2x)dx = --- ∫xdf'(2x) = ----[f'(2x)x - ∫f'(2x)dx] 2 2 1 1 = ---- f'(2x)x - ---- f(2x) + c 2 4 and put the bound into above. f(0) = 1 ,f(2) = 4 , f'(2) = 5 get the answer 7/4. 11. -1 x = f (y) -> y = f(x) -1 and we want to know f (y) differntial to y =? -1 so from x = f (y) , we differntial both side respect to x. -1 df (y) dy dy -------- * ----- = 1 and we know ---- = f'(x) dy dx dx (chain rule) so if we differential with respect to x again and again , we get the answer. 2 -1 d f (y) -f''(x) -------- f'(x) = ----------- , 2 ' 2 dy [f (x)] 2 -1 ''' 3[f''(x)] -f'''(x) [f (y)] f'(x) = ----------- + --------- and put the condition. 4 3 [f'(x) ] [f'(x)] f(1)=4 imply x = 1 , y=4 -1 ''' [f (4)] = -3/32 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.122.244
dali510313:那個...我的第11題跟你不一樣說= = 111.184.178.34 06/26 20:28
rygb:真的假的 我檢查一下好了 114.34.122.244 06/26 20:31
※ 編輯: rygb 來自: 114.34.122.244 (06/26 20:34)
dali510313:對了!!!:) 111.184.178.34 06/26 20:37
dali510313:推r大的過程阿!!!!我都不會打Q_Q 111.184.178.34 06/26 20:37
rygb:感謝你 :D 114.34.122.244 06/26 20:38
arebecca455:謝謝r大!!我要再去把觀念弄清楚了 59.115.20.186 06/26 20:50
arebecca455:謝謝你們 59.115.20.186 06/26 20:50