作者rygb (再生)
看板trans_math
標題Re: [考古] 台大98
時間Tue Jul 5 20:39:09 2011
※ 引述《maywen (王小咩)》之銘言:
: http://exam.lib.ntu.edu.tw/sites/default/files/exam/undergra/98/98026.pdf
: 我想問
: 1.第二題的(b)
: 為什麼我算出來的答案是f(x)=(x+2)/(x+3)
: 我看之前有人算出來是f(x)=3(x+2)/(x+3)
你可能忘了積分常數 三是從那邊出現的
f'(x) = f(x) / (x+2) / (x+3)
f(0) = 2 (boundary condition)
df(x) dx
----- = ---------- ln f(x) = -1 ln (x+3) + 1 ln (x+2) +
ln c
f(x) (x+2)(x+3)
x+2
f(x) = ----- c
x+3
and use boundary condition to solve c , c = 3
x + 2
so f(x) = 3 * -------
x + 3
: 2.第三題的(a)和(b)
(a)
Set if lim an = k , so does lim an+1 = k
n->∞ n->∞
1/2
from the condition we know an+1 = ( 6 + an )
1/2
so we get k = ( 6 + k )
2
and k = 6 + k k = 3 or -2
but.. k = -2 put it back to the equation -2 ≠ 2
so the solution is only 3 .
(b)
when t approach 0 , the integral part approach 1
∞
but 1/t approach ∞ 1 is indetermin form
when t approach 0
1 1 t 0
--- ln (∫ ( 1 + x) dx) = ( ---- )
t 0 0
but you must know the above equation is differential respect to t
然後我之前好像寫錯了
羅畢達完應該是長這樣
t |x=1
∫ln(1+x)(1+x) dx ∫ln(1+x) dx x*ln(1+x) - x +ln(1+x)|
|x=0
------------------- = ------------------ = ----------------------------
t |x=1
∫(1+x) dx x | 1
|x=0
先把t->0 放入 方便計算
get 2ln2 -1 , too.
and put it back on exp.
Or你可以先對x積分 再去微分t 或著是直接 將裡面降次皆可
或著 是你一開始就把積分部分 表示成t函數
t+1 t+1
1 t (1+x) | 2 - 1
∫ (1+x) dx = ------- | = --------
0 t+1 | t + 1
and t -> 0 , becomes to 1 we get 0/0 , too
Use L'hopital's rule
t+1
1 ln2*2 1
--------- * ( --------- - ------- )
t+1
1 2 -1 t + 1
set t = 0 ,
we get 2ln 2- 1
(2ln2-1)
-1
so answer is e =
4 e
: 3.第六題的(b)
2
-x
Set I = ∫e dx
2 2 2
2 -(x + y ) -r
I = ∫∫e dxdy = ∫∫e r drdt
x = 0 ~ ∞
--> only positive. r = 0 ~ ∞ t = 0 ~ π/2
y = 0 ~ ∞
a
so solve it , we get I. Note e always positive so that I is positive.
I = √π / 2 .
: 麻煩大家了!!謝謝!!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.34.122.244
→ kkgfdsaa:第6題b錯了 是√π / 2 才對 59.114.206.8 07/05 20:48
感謝提醒 謝謝
※ 編輯: rygb 來自: 114.34.122.244 (07/05 20:51)
→ maywen:謝謝你! 218.161.88.201 07/05 21:04
※ 編輯: rygb 來自: 114.34.122.244 (07/06 14:24)