看板 trans_math 關於我們 聯絡資訊
※ 引述《min102257 (暱稱)》之銘言: : ∞ 1 : Σ --------------- conv.? : N=3 ln(lnN) : (lnN) : 有點複雜不知怎麼算 : 化成積分好像也積不出來 : 那應該是用 比較檢驗法?? : 麻煩高手了~ 感謝 divergent. since ln(ln(n)) is increasing , ln(n) is increasing so ln(ln(n)) ln(n) is increasing to inf 1 so ─────── decreasing to 0 ln(ln(n)) ln(n) Cauchy condensation principle can be applied 2^n consider ───────── (n都用2^n帶入 然後整個級數乘2^n) ln(nln(2)) nln(2) 2^n => ───────────── (ln(n) + ln(ln(2))) nln(2) 2^n => ────────────────────────── denoted by b_n ln(n) ln(ln(2)) ln(n) ln(ln(2)) n * n * ln(2) * ln(2) ~~~~~~~~~~ ↓ ln(ln(2)) n by root test, (b_n)^(1/n) 2 = ──────────────────────────────── (ln(n))/n (ln(ln(2)))/n (ln(ln(2)))/n (ln(ln(2)))/n n * n * n * ln(2) ~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ↓ ↓ ↓ ↓ as n→inf, 1 1 1 1 so summation of b_n diverges imply the original question is divergent -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.169.137.197
min102257:也太難了ㄅ140.120.226.101 10/16 08:16
min102257:http://en.wikipedia.org/wiki/Cauchy_c140.120.226.101 10/16 08:50
min102257:Cauchy condensation test140.120.226.101 10/16 08:50
box711:王博的書裡有理論說明與解答 114.34.36.226 10/25 22:28