作者Honor1984 (希望願望成真)
看板trans_math
標題Re: [積分] 積分e積出拍
時間Mon Jul 2 10:26:23 2012
※ 引述《suhorng ( )》之銘言:
: ※ 引述《andy05227900 (小黑)》之銘言:
: : 請問為什麼
: : 積分區間0到正無限大e^-u^2du=根號拍/2
: : 為什麼積分e可以積出拍??
: Apostol 書中一個很神的做法
: 7.19 Define
: x 1 e^{-x^2(t^2+1)}
: f(x) = ( ∫e^{-t^2} dt )^2, g(x) = ∫-----------------dt
: 0 0 t^2 + 1
: π
: a) Show that g'(x) + f'(x) = 0 for all x and deduce that g(x) + f(x) = ---
: __ 4
x
f'(x) = 2[∫e^{-t^2} dt]exp(-x^2)
0
1
g'(x) = ∫-2xexp[-x^2(t^2+1)]dt
0
令 u=xt
x
= -2∫exp[-x^2-u^2]du
0
= -f'(x)
=> g'(x) + f'(x) = 0
積分
g(x) + f(x) = C
g(0) = arctan(1) = π/4
f(0) = 0
所以g(x) + f(x) = π/4
: ∞ √π
: b) Use (a) to prove that ∫e^{-t^2} dt = ----
: 0 2
lim g(x) = 0
x→∞
=>lim √[f(x)] = √[π/4] = (√π)/2
x→∞
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 128.220.147.108
推 craig100:Apostal果然怪題超多= = 這解法也夠神 114.44.125.94 07/02 12:59
→ craig100:我剛卡在不知g要怎微分= = 高手!! 114.44.125.94 07/02 13:00
→ Honor1984:x只在integrand中 所以就直接對被積函數128.220.147.108 07/02 13:18
→ Honor1984:微x128.220.147.108 07/02 13:18
→ BaBi:漂亮@@ 218.163.90.174 07/02 17:03