作者metastable (亞穩)
看板trans_math
標題期考提 數列
時間Mon Jun 24 09:41:45 2013
The Binomial Theorem implies that
(2n)! n
(1-x)^-(1/2) = 1 +Σ ------------- X
n=1 4^n *(n!)^2
(b)Estimate the error if one uses x = -1/4
and the first five non-zero terms in (a) to approximate 1/√5
<sol>
(b) (2n)! n
1/√5 =
(1/2)((1-(-1/4))^-1/2=
(1/2)Σ ------------- X
n=0 4^n *(n!)^2
Since it is an alternating series (2 points)
(2n)! n 10!
∣1/√5 - (1/2)Σ ------------- X ∣≦ ---------------
n=0 4^n *(n!)^2 2 *4^10 (5!)^2
那個1/2是怎麼出來的 還有下面那段我也看不太懂 可以解釋一下嗎
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.114.123.88
※ 編輯: metastable 來自: 140.114.123.88 (06/24 09:42)
推 suhorng:1/√[1-(-1/4)] = 1/√(4/5) = 2/√5 118.166.44.209 06/24 10:39
→ suhorng:下面那段就alternating series誤差估計 118.166.44.209 06/24 10:39
→ suhorng:誤差不超過略去的第一項 118.166.44.209 06/24 10:40
推 newversion:樓上 1/√(5/4) 才對 140.112.251.86 06/24 15:47
→ suhorng:感謝樓上 118.166.44.209 06/24 18:01