看板 trans_math 關於我們 聯絡資訊
The Binomial Theorem implies that (2n)! n (1-x)^-(1/2) = 1 +Σ ------------- X n=1 4^n *(n!)^2 (b)Estimate the error if one uses x = -1/4 and the first five non-zero terms in (a) to approximate 1/√5 <sol> (b) (2n)! n 1/√5 =(1/2)((1-(-1/4))^-1/2= (1/2)Σ ------------- X n=0 4^n *(n!)^2 Since it is an alternating series (2 points) (2n)! n 10! ∣1/√5 - (1/2)Σ ------------- X ∣≦ --------------- n=0 4^n *(n!)^2 2 *4^10 (5!)^2 那個1/2是怎麼出來的 還有下面那段我也看不太懂 可以解釋一下嗎 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.123.88 ※ 編輯: metastable 來自: 140.114.123.88 (06/24 09:42)
suhorng:1/√[1-(-1/4)] = 1/√(4/5) = 2/√5 118.166.44.209 06/24 10:39
suhorng:下面那段就alternating series誤差估計 118.166.44.209 06/24 10:39
suhorng:誤差不超過略去的第一項 118.166.44.209 06/24 10:40
newversion:樓上 1/√(5/4) 才對 140.112.251.86 06/24 15:47
suhorng:感謝樓上 118.166.44.209 06/24 18:01