看板 tutor 關於我們 聯絡資訊
1.年級:高一 2.科目:數學 3.章節:多項式 4.題目:若多項式f(x)對於所有的實數x滿足f(x+1)-2f(x)+f(x-1)=x+1 且f(0)=0,f(1)=1,求f(x)=? Ans:1/6x^3+1/2x^2+1/3x 5.想法:感謝crazy大大的提示目前已經知道他是個三次式 令f(x)=ax^3+bx^2+cx 因為f(0)=0 f(1)=1 可得到a+b+c=1 接下來我想到的只有帶回原式去比較係數,不過有點麻煩, 請問是否有更快的方法呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.161.147.67
crazymars:這題要用兩次 令 g(x)=f(x)-f(x-1) 11/24 23:17
crazymars:所以原式為g(x+1)-g(x)=x+1 => g(x)為二次式 11/24 23:18
crazymars:二次式g(x)=f(x)-f(x-1) => f(x)為三次式 11/24 23:19
vvbird:想法太過簡略, 警告一次, 沒有修正, 明日移除 11/24 23:19
※ 編輯: tonyhappyboy 來自: 118.161.147.67 (11/24 23:32)
tonyhappyboy:剛發現代回原式技巧性的消去多餘的係數 可得解 謝謝 11/24 23:38