看板 tutor 關於我們 聯絡資訊
※ 引述《linsir0825 (我不想這樣)》之銘言: : ※ 引述《boyzone66 (打籃球ㄟ)》之銘言: : : 1.年級:高一(其實是高三總複習的題目) : : 2.科目:數學 : : 3.章節:數與座標係 : : 4.題目: : : 2004的95次方 除以13的餘數是多少? : : 5.想法: : : 解答上是這樣寫 : : 2004的95次方 = (13‧154+2)的95次方 =13Q + 2的95次方 : : 這邊當然沒問題 也知道怎麼來的... : : 問題是它下一步就寫2的n次方除以13的餘數依序為 2 4 1 三數循環 故所求為4 : : = = : : 但不管我怎麼除 哪有循環?? 沒有阿.....Excel算不出這麼大的餘數 不知對還錯 不可能不會循環 因為有費馬定理 不是那個很有名的費馬最後定理 雖然你可能不知道除以13最多13個一循環 但是我很納悶的是 你用2^n 也不過最大會遇到2^12=4096 為什麼會當機咧@@" 以下mod看不懂的話 你就把≡當做兩邊餘數相等就好了 有興趣可以自己去翻一下數論的書 他的定義很簡單 而我只是覺得寫中文字很多 所以偷懶一下 2^1 ≡ 2 (mod 13) 2^2 ≡ 4 (mod 13) 2^3 ≡ 8 (mod 13) 2^4 ≡ 3 (mod 13) 2^5 ≡ 6 (mod 13) 2^6 ≡12 (mod 13) 2^7 ≡11 (mod 13) 2^8 ≡ 9 (mod 13) 2^9 ≡ 5 (mod 13) 2^10≡10 (mod 13) 2^11≡ 7 (mod 13) 2^12≡ 1 (mod 13) 所以12個一循環如題要求的是 2^95除以13的餘數為7(因為95除以12餘11) 另外實際上我不是直接去算2^12再除以13 這樣題目變成7當底數可能會算到死掉 你可以利用 (2^n)除以13的餘數 =(2^{n-1}除以13的餘數*2)此數除以13的餘數 至於為什麼 如果妳是老師我覺得你應該要知道 如果你是學生 我希望你自己思考一下 這跟我們會討論四則運算餘數性質裡面的其中一個的簡單應用 最後提醒 由費馬定理得 除以p的餘數最多 p-1 個循環一次 所以如果今天有人問你除以97的餘數可能會算到96次 故上面那個版友的方法也是好方法 基本上太多才循環就降次吧 這樣不一定會比較慢 只是一般學生對循環比較有感覺 我用再次算一次 先觀察2^6=64除以13餘-1 2^95 ≡ 2^90*2^5 (mod 13) ≡ (2^6)^15*2^5 (mod 13) ≡ (-1)^15*32 (mod 13) ≡ (-1)(6) (mod 13) ≡ 7 (mod 13) : : 我算 2的95次方=10k+8 (k是整數) : : 因為 2的n次方 個位數 2,4,8,6 循環 : : 95/4=23...3 所以個位數是8 : : 接下來我就當機了.... : : 麻煩誰幫我一下>"< : : 拜託了 : 答案是錯的..不是4..應該為7 : 利用同餘原理: : 1. 若a/c的餘數為r : 那(a^b)/c的餘數 = (r^b)/c的餘數 : 2. 若a/c的餘數為r1,b/c的餘數為r2 : 那(a*b)/c的餘數 = (r1*r2)/c的餘數 : 所以這一題 : (2009^95)/13的餘數 : = (2^95)/13的餘數 : = (32^19)/13的餘數 : = (6^19)/13的餘數 : = 216*(6^16)/13的餘數 : = 8*(36^8)/13的餘數 : = 8*(10^8)/13的餘數 : = 8*(100^4)/13的餘數 : = 8*(9^4)/13的餘數 : = 8*(81^2)/13的餘數 : = 8*(3^2)/13的餘數 : = 72/13的餘數 : = 7 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.131.39
n19860423:倒數第四行,應該是 (2^6)^15 * 2^5 08/17 11:41
※ 編輯: crazymars 來自: 114.37.131.39 (08/17 13:07)
crazymars:thx 已修正 08/17 13:07
boyzone66:我的意思是沒有2 4 1循環...我自己也有把每個餘數都算了 08/17 13:33
boyzone66:我所謂的當機是 這是我想到其中一個方法 但這只有到個位 08/17 13:34
boyzone66:而且我後來也發現 我想的方向好像不太對.. 08/17 13:39
boyzone66:我是新手老師 我單純覺得 出這種考題這樣算很麻煩 08/17 13:40
boyzone66:總之 謝謝 08/17 13:42
boyzone66:PS 我說麻煩是指 把餘1~12的循環每個都算出來 才求餘數 08/17 13:48
charater:樓上 如果您有餘數可加減乘的觀念就不會這樣覺得了~ 08/17 15:00